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This paper presents a methodology for the analysis of the free, in-plane,
vibration of thin rings with profile variations in the circumferential direction. The
methodology is suitable for any thin ring which is bounded by closed curves which
are single valued functions of circumferential position. The inner and outer
profiles are expressed as Fourier series, thus allowing any profile to be
approximated with any degree of accuracy. An iterative numerical procedure for
determining the true middle surface and the corresponding thickness at each
cross-section around the circumference is established. A reduced (plane stress)
form of Novozhilov’s thin-shell theory is used to model the deformation
mechanics of the ring. The eigenvalue problem is then formulated using the
Rayleigh–Ritz method in conjunction with a harmonic series description of the
displacements. General expressions are presented for the corresponding mass and
stiffness matrices. A companion paper presents a comprehensive set of results
which illustrates application of the theory.
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1. INTRODUCTION

The free vibration of rings and cylindrical shells has been widely studied for over
a century. Much of the early work on rings is summarised in reference [1] while
reference [2] contains a comprehensive survey of work completed prior to 1973 on
the vibration of shells. More recent work of particular relevance to the present
paper will be reviewed later.

The great majority of papers dealing with rings and cylindrical shells are
restricted to cases where the structure is either perfectly circular, or has a
non-circular but otherwise perfectly defined shape such as an ellipse. However,
such perfect shapes are impossible to realise in practice due to limitations in
manufacturing processes which cause departures from the nominal profile, i.e.,
imperfection.

The general effects of imperfection on the natural frequencies and mode shapes
of nominally circular rings and cylinders is well understood [3]. In particular,
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imperfection causes frequency splitting between pairs of modes which would, in
a perfectly circular structure, have identical natural frequencies. It also fixes the
nodal positions in the structure, thus removing the circumferential indeterminacy
which exists in perfectly axi-symmetric structures.

The initial reason for carrying out the work reported in the present paper was
to obtain an improved quantitative understanding of the effects on natural
frequencies and mode shapes of small derivations from true circularity in rings and
cylinders. This was motivated by the involvement of the authors in the
development of inertial sensors (rate gyroscopes and rate integrating gyroscopes)
which use a vibrating ring or cylinder as their sensitive element [4, 5]. In these
applications, frequency splitting of the order of 100 ppm (0·01%) or better is often
required between the relevant modes which are usually low order (‘‘2u’’ or ‘‘3u’’)
radial modes. Thus, levels of imperfection which would be irrelevant in many
structures assume a first order importance in such applications.

The most important early work on the free vibration of a circular ring [6] was
published in 1871 by Hoppe, who obtained a simple classical solution by neglecting
the effects of centreline extension, shear deformation and rotatory inertia.
Subsequently, many authors have investigated the vibration of thin rings and shells
[1, 2] using a variety of methods based on either Newtonian or energy approaches.

Regarding rings, the majority of papers deal with structures which are either
perfectly circular or perfectly elliptical with a circumferentially constant
cross-section. Comprehensive reviews of these are given in references [7, 8].
Relatively few papers deal with the more general case where the ring cross-section
shape varies with circumferential position and a brief review of the most important
of these follows.

References [9, 10] presented analyses of the vibrations of circular and
non-circular rings and shells. In these, the shape of the mid-surface was assumed
to be a simple analytic function of the circumferential co-ordinate and the
circumferential variation in ring thickness and the ring deformation were both
described using ‘‘infinite’’ power series (truncated in practice at 90 terms). This
approach would be difficult to apply to rings of arbitrary profile for which the
mid-surface shape is not known a priori in a suitable form.

In references [11, 12], rings were treated as one-dimensional curved beams to
investigate the in-plane vibrations of rings of non-uniform cross-section in which
specific forms of the centreline of the middle surface were assumed. Exact solutions
for the axi-symmetric modes of vibrating rings of uniform cross-section were used
as the basis for approximate solutions for rings with non-uniform cross-section,
using a first order approximation based on beam bending theory.

The effects of simple eccentricity in circular rings were considered in reference
[13], which presented a perturbation analysis in which the classical frequency
equation for a thin ring is modified to account for eccentricity, and frequency
splitting was predicted.

The analysis presented in reference [14] is of particular relevance to the work
reported in the present paper. Reference [14] deals with circular cylindrical shells
with circumferential thickness variation caused by eccentricity between circular
inner and outer surfaces. The shell geometry was defined by two circular profiles
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with non-coincident centres. The cylinder centre was taken to be midway between
the centres of the inner and outer surfaces and the thickness variation was
represented by Fourier series. Love’s thin shell theory and the Rayleigh–Ritz
method were used to estimate the natural frequencies and frequency splitting. An
important assumption on which the analysis in reference [14] is based is that there
exists an unstrained circular mid-surface which is taken to be a circle whose radius
is the mean of the radii of the inner and outer surfaces. Strictly speaking this does
not comply with the formal definition [15] of the mid-surface which is taken as
the locus of points which lie at equal distances from the inner and outer surfaces
along the directions of the normal to the mid-surface. The accuracy of results
based on the analysis given in reference [14] will therefore be affected by the
assumed definition of mid-surface, although for small eccentricity in thin rings the
effect may be expected to be minimal. However, for profiles which are far from
having a circular mid-surface (such as ellipses, ovals and polygons) the assumption
of a circular mid-surface is not valid. The present paper presents a methodology
for the formulation of the eigenvalue problem for the in-plane vibration of thin,
flat rings of constant axial length with variable radius and circumferentially
variable rectangular cross-section as considered in reference [7]. The shape of the
ring is defined by two closed profiles, each of which is a single-valued function in
polar co-ordinates. The inner and outer profiles are decomposed as Fourier series,
thus allowing any single-valued profile to be approximated to any desired degree
of accuracy in a very general way. It may be noted that modern metrology
equipment for measuring circularity can be used to provide the required Fourier
series description of any such machined profile.

The middle surface of the ring is properly determined from the inner and outer
surfaces in accordance with the usual definition [15], using an iterative numerical
procedure. A reduced, plane stress version of Novozhilov’s thin shell theory is used
to describe the deformation mechanics of the ring. Novozhilov’s theory is often
regarded [16, 17] as being the most accurate for shells of arbitrary shape.

Finally, the Rayleigh–Ritz method is used to set up the eigenvalue problem in
terms of generalised co-ordinates which are taken to be the harmonic displacement
functions of the flexural vibration of a perfect ring.

It may be noted that the method used in the present paper could be extended
to cover the vibration of prismatic thin shells with circumferentially variable
thickness.

The Fourier series description of the ring geometry adopted here is obviously
appropriate for rings which are nominally circular. It is, however, equally suitable
for other closed shapes such as ellipses, ovals and polygons. A companion paper
[18] reports the application of the methodology of the present paper to a range
of rings of nominally circular shape, and draws conclusions about the effects of
simple departures from circularity in the inner and outer profiles. A further paper
[19] will present results for elliptical rings, with and without circumferential
thickness variations.

Before the vibration analysis can be carried out it is first necessary to devise a
logical system for describing the inner and outer profiles of the ring, and for
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determining the true middle surface. These issues are addressed in sections 2.1 and
2.2 below.

2. GEOMETRY AND IMPERFECTION

2.1.  

Consider a thin ring of mean radius ra having a rectangular cross-section of
mean thickness h (�ra ) and axial length L (�ra ). The inner and outer surfaces
vary circumferentially. Two co-ordinate systems are used to formulate the
problem, as follows (see Figure 1): (1) Global polar co-ordinates in which unit
vectors ıb', ıj' are directed along the global circumferential and radial directions.
The initial geometry of the undeformed ring is defined using this co-ordinate
system; (2) Local curvilinear co-ordinates in which unit vectors ıb , ıj are directed
along the local tangential and normal directions relative to the middle surface
which is yet to be determined. This local co-ordinate system is required for deriving
the strain and kinetic energies, based on the Novozhilov thin-shell theory, in terms
of radial and circumferential displacements which are w, v in the local co-ordinate
system (and w', v' in the corresponding global co-ordinate system). In Figure 1,
rP denotes the distance from an arbitrary fixed point C' inside the ring to a general
point P located on the middle surface at angle b' relative to an arbitrary datum
in global co-ordinate and uP is the angle between the global and local co-ordinate
systems at the point P. In the following formulation, all the displacements,
thicknesses, and radii are expressed non-dimensionally by dividing by ra , the mean
radius of the ring.

The overall geometry of the ring is determined by the shape of the inner and
outer bounding surfaces which, in turn, determine the position and shape of the
middle surface of the ring (see Figure 2). This contrasts with other formulations

Figure 1. A thin ring with arbitrary profile.



'

P

P
'

P

rP

O'
O

h +

h –

P

II'
f+(   ')

f–(   ')

C'

Outer surface

Middle surface

Inner surface

   — 501

Figure 2. The bounding surfaces and the middle surface.

where the shape of the mid-surface is assumed to be known a priori. Due to the
fact that they are (single valued) closed curves, the outer and inner surfaces can
be expressed by Fourier series in terms of the global circumferential co-ordinate
b' as follows:

f+(b')= f+
0 + s

n

p=1

f+
p cos (pb')+ s

n

q=1

f+
q sin (qb'), (1)

f−(b')= f−
0 + s

n

p=1

f−
p cos (pb')+ s

n

q=1

f−
q sin (qb'), (2)

where f+(b') and f−(b') denote respectively the outer and inner surface profile
functions with respect to the global circumferential co-ordinate b' and f+

0 , f+
p , f+

q ,
f−
0 , f−

p and f−
q are the Fourier coefficients. In practice, the Fourier coefficients can

be measured by suitable metrology equipment. In Figure 2, f+(b') and f−(b')
denote respectively the distance from arbitrary point C' to points O' and I' on
the outer and inner surfaces. Choosing C' at a different position will lead to a
different set of Fourier coefficients for the same inner and outer profiles. Note
however that the choice of C' must be the same for both inner and outer profiles.

2.2.     

The middle surface is defined as the locus of points which lie at equal distances
from the outer and inner surfaces along the direction normal to the mid-surface.
Thus, referring to Figure 2 the thickness at a point P on the true middle surface
is equal to the distance IO measured along the local normal direction j. Hence,
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since point P lies on the middle surface, we have h+
j = h−

j , where h+
j and h−

j denote
the outer and inner thicknesses measured from the point P to the outer and inner
surfaces along the local normal direction j.

The problem now is to determine the position of the true mid-surface, given the
inner and outer profiles which define the ring. This can be achieved using an
iterative procedure as described below. Consider first Figure 3(a) which shows the
inner and outer profiles f−(b'P ) and f+(b'2 ).

I' and O' are points on the inner and outer surfaces along the global radial
direction j' at a given orientation b'P which corresponds to point P on the true
mid-surface. I and O are points on the inner and outer surfaces along the local
normal to the middle surface at P. C'I and C'O are the inner and outer surface
profile functions, f−(b'1 ) and f+(b'2 ), evaluated at orientations b'1 and b'2 ,
respectively, which are to be determined. rP is the length of a vector, rP , from C'
to the point P on the middle surface, and uP denotes the angle between the local
and global co-ordinate systems so that bP = b'P + uP .

For a given orientation b'P , the outer and inner surface functions, f+(b'P ) and
f−(b'P ), are known and are defined by equations (1) and (2) but rP is unknown
initially. From the definition of middle surface and Figure 3(a), the length of rP

at global position b'P can be expressed in terms of f+(b'P ), f−(b'P ) and variable
parameter m as follows

rP =mf+(b'P )+ (1−m)f−(b'P ), (3)

where 0QmQ 1. In general, m will vary as b'P changes. In the special case where
f+(b'P ) and f−(b'P ) are concentric circles, m=0·5.

The true middle surface can now be determined using the following iterative
numerical procedure.

Step I—Assume initially that P on the middle surface at orientation b'P , is also
the mid-point of I'O' (i.e., I'P=PO'), and m=0·5 in equation (3).

Step II—Determine the corresponding locations of I and O in terms of the given
orientation b'P .

To do this, it is necessary to note that, from geometrical considerations (see
Figure 3(b))

tan bP =Q1P/IQ1 = [PM− IB]/[C'M−C'B]

= [C'P sin b'P −C'I sin b'1 ]/[C'P cos b'P −C'I cos b'1 ], (4)

and, similarly (see Figure 3(c))

tan bP =Q2O/PQ2 = [OD−PM]/[C'D−C'M]

= [C'O sin b'2 −C'P sin b'P ]/[C'O cos b'2 −C'P cos b'P ], (5)

where (see Figure 3(a))

bP = b'P + uP . (6)
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Starting from the definition of curvature [20] it can be shown [7] that uP can be
expressed as

uP =tan−1 −ṙp

=rp =
. (7)

Figure 3. The determination of the middle surface of a ring. (a) The assumed middle surface. (d)
The true middle surface (IP1 =P1O).
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Note that ṙp denotes the first derivative of rp (defined by equation (3)) with respect
to b'P .

Substitution of equations (3), (6) and (7) into equation (4) gives:
tan (b'P + uP )= {[mf+(b'P )+ (1−m)f−(b'P )] sin b'P − f−(b'1 ) sin b'1}

/{[mf+(b'P )+ (1−m)f−(b'P )] cos b'P − f−(b'1 ) cos b'1}. (8)

Similarly, equation (5) can be rewritten as

tan (b'P + uP )= {f+(b'2 ) sin b'2 − [mf+(b'P )+ (1−m)f−(b'P )] sin b'P}

/{f+(b'2 ) cos b'2 − [mf+(b'P )+ (1−m)f−(b'P )] cos b'P}. (9)

Noting the definition of uP using equations (7) and (3), inspection of equations
(8) and (9) indicates that b'1 and b'2 are the only unknown variables when m takes
an assumed value. A standard numerical technique, such as the Newton–Raphson
method, can be used to solve these non-linear equations for the unknown
variables. Having obtained b'1 and b'2 , the corresponding locations of I and O can
be determined.

Step III—Determine the mid-point P1 between the inner and outer surfaces
along the line IO (see Figure 3(d).

From Figure 3(d), it can be seen that

C'P1 =
C'M1

cos b'P1

=

1
2

(C'D+C'B)

cos b'P1

=
C'O cos b'2 +C'I cos b'1

2 cos b'P1

, (10)

where

b'P1 = tan−1 P1M1

C'M1

= tan−1

1
2

(OD+ IB)

1
2

(C'D+C'B)

= tan−1 C'O sin b'2 +C'I sin b'1
C'O cos b'2 +C'I cos b'1

. (11)

Equations (10) and (11) can be solved using the Newton–Raphson numerical
method to obtain b'P1, the angular position of point P1.

The positional difference between the originally assumed mid-point P and the
newly estimated mid-point P1 is then compared to a given tolerance in terms of
the global circumferential co-ordinate (1·0×10−5 rad was used to ensure four
significant figures in the frequencies in the numerical investigations [7, 18, 19].

Step IV—If P and P1 do not coincide within the given tolerance, then repeat
steps II and III until the true mid-point is found.

At each iteration the point P is redefined by setting rP =C'P1 for the same value
of b'P and m is recalculated from equation (3) where

m=[rP − f−(b'P )]/[f+(b'P )− f−(b'P )]. (12)
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When the point P on the true middle surface is determined, the variables rP , h−
j ,

h+
j , uP and bP at the given b'P can be calculated. The same iterative procedure can

then be used to calculate all the corresponding variables section by section around
the circumference from b'=0 to 2p. The step length in b' should be varied
depending on the complexity of the profile variation and the desired accuracy in
the frequencies (1·0×104 rad was used for the small profile variations to achieve
four significant figures frequency accuracy in the numerical investigations
[7, 18, 19]).

Having defined the ring geometry it is necessary to derive expressions for the
kinetic energy and strain energy of the deformed ring so that the Rayleigh–Ritz
method can be applied. This will be done in the next section.

3. ENERGY EXPRESSIONS

The strain energy for a thin ring whose axial length is much smaller than the
mean radius has the form [12]:

S=
r2

aEL
2 g

b2

b1
g

h+
j (b)

h−
j (b)

e2
bbR01+

j

R1 db dj, (13)

where ra is the mean radius of the middle surface, which is taken as the zero order
Fourier harmonic of the mid-surface profile. E is Young’s modulus and L is the
axial length of the ring. ebb , the normal strain along the local tangential co-ordinate
b, and R, the non-dimensional radius of curvature at a point on the middle
surface, are functions of b'. R can be determined at point P using the following
equation [20]:

1
R

=
z(ṙ · ṙ)(r̈ · r̈)− (ṙ · r̈)2

(ṙ · ṙ)3/2 , (14)

where r= rP as previously defined. Note that the limits of integration, h+
j and h−

j ,
in equation (13) are functions of b'.

Based on the reduced Novozhilov thin-shell theory in which the plane-stress
approximation is used by neglecting axial deformations and axial variations in
radial and tangential displacements, the normal strain ebb in equation (13) is given
as

ebb =
1

1+ j/R
(ob + jkb ), (15)

where

ob =
1
R

1v
1b

+
w
R

, kb =−
1
R

1

1b 01
R

1w
1b

−
v
R1 . (16, 17)

ob and kb characterise the deformation of the middle surface of the ring. ob is
the tangential strain at the middle surface and kb is the change of curvature. v, w
are the non-dimensional displacement components of a point on the middle
surface along the tangential and normal directions respectively.
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Substituting equations (14)–(17) into equation (13), then integrating with respect
to the thickness from h−

j to h+
j , neglecting the 4th and higher powers of h+

j and
h−

j and noting that fb2
b1

F(b)[h+2
j − h−2

j ] db=0 where F(b) is an arbitrary function
of b, the strain energy can be expressed in terms of the tangential and normal
displacements, v and w, and local co-ordinate b as follows

S=
r2

aEL
2 g

b2

b1
6$1

R 01v
1b1

2

+2w
1v
1b

+w2% H

+
1

3R3 $w2 +2w
12w
1b2 +012w

1b21
2

% H3

+
1

3R2 $2w
1w
1b

+2
1w
1b

12w
1b2 −2vw−2v

12w
1b2% 1

1b 01
R1 H3

+
1

3R $01w
1b1

2

+ v2 −2v
1w
1b%$ 1

1b 01
R1%

2

H37 db, (18)

where H and H3 denote (h+
j − h−

j ) and (h+3
j − h−3

j ), respectively.
Similarly, the kinetic energy can be expressed as

T=
r4

arL
2 g

b2

b1
g

h+
j (b)

h−
j (b) $01v(j)

1t 1
2

+01w(j)
1t 1

2

%R01+
j

R1 db dj, (19)

where r is the material density, and v(j) and w(j) are the tangential and normal
displacements of a point on the parallel surface separated from the middle surface
by a distance j [14], given by

v(j)= v+ j8, w(j)=w, (20, 21)

where

8=−
1
R

1w
1b

+
v
R

. (22)

Substituting equations (20)–(22) into equation (19) and neglecting 4th and
higher powers of h+

j and h−
j , the kinetic energy can be expressed as follows:

T=
r4

arL
2 g

b2

b1
6$01v

1t1
2

+01w
1t1

2

% RH

+$301v
1t1

2

−4
1v
1t

12w
1t 1b

+0 12w
1t 1b1

2

% 1
3R

H37 db, (23)

in which the terms of the form: fb2
b1

F(b)[h+2
j − h−2

j ] db have been set to zero in
equation (23). The first term on the right-hand side of equation (23) represents
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kinetic energy due to the linear velocities of point P on the middle surface and
the second term is related to the effect of rotational inertia about the point P.

Having established the appropriate energy expressions it is now necessary to
define the generalized co-ordinates which are to be used to define the ring
displacements, as outlined in the following section.

4. DISPLACEMENT FUNCTIONS AND CO-ORDINATE TRANSFORMATION

For free vibration at frequency v the tangential and normal displacements, v
and w, of the middle surface are assumed to have the following forms

v= s
N

n=0

(vs
n sin nb'− vc

n cos nb') eivt, (24)

w= s
N

n=0

(wc
n cos nb'+ws

n sin nb') eivt, (25)

where vc
n , vs

n , wc
n and ws

n are the generalized co-ordinates (undetermined amplitude
coefficients). The superscripts s and c in equations (24) and (25) denote the
coefficients of sine and cosine terms, respectively. It is obvious from equations (24)
and (25) that the terms involving vs

n and ws
n equal zero when n=0. Thus, one

displacement pattern at n=0 is the so-called breathing mode (i.e., radial
displacement w is equal at all circumferential positions and the tangential
displacement v is zero everywhere), and the other is a rigid body rotation about
the ring axis (i.e., the radial displacement w is zero everywhere).

The number of terms to be used in the displacement function series will depend
on the degree of accuracy required in the solution. This matter is discussed in
further detail in reference [18] when specific examples are investigated.

Note that the strain energy, equation (18), and the kinetic energy, equation (23),
are both expressed in terms of the local co-ordinates b, j and and tangential and
normal displacement components, v and w, integrated over the local tangential
co-ordinate b. In order to calculate the natural frequencies (eigenvalues) and the
mode shapes (eigenvectors), the displacement functions, v and w, in equation (24)
are expressed in terms of global circumferential co-ordinate b'. Hence, it is
necessary to make a co-ordinate transformation in equations (18) and (23) to
express the local tangential co-ordinate b in terms of the global co-ordinate b'.
The integrals can then be evaluated numerically over the global circumferential
co-ordinate b' from 0 to 2p.

The required relationship between the global and local co-ordinates can be
deduced from Figure 4. This shows the inner and outer profiles and the
mid-surface which are defined relative to C'. R is the radius of curvature of the
mid-surface at point P. The length ds from P to P' can be expressed as:

ds=Lp db'=R db, (26)
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Figure 4. Transformation between global and local co-ordinates.

where Lp is the Lamé’s parameter [14], defined as:

L2
p =0 1x

1b'1
2

+0 1y
1b'1

2

. (27)

x and y in equation (27) denote generalized representations in the perspective of
a curved surface in plane Cartesian co-ordinates.

It follows that

db=
LP

R
db'. (28)

Hence

1v
1b

=
R
Lp

1v
1b'

,
1w
1b

=
R
Lp

1w
1b'

(29, 30)

and

12v
1b2 =

R2

L2
p

12v
1b'2

+
R
Lp

1v
1b' 6R 1

1b' 0 1
LP1−

R2

LP

1

1b' 01
R17 , (31)

12w
1b2 =

R2

L2
p

12w
1b2'

+
R
Lp

1w
1b' 6R 1

1b' 0 1
Lp1−

R2

Lp

1

1b' 01
R17 . (32)
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Substituting equations (28)–(32) into equations (18) and (23), the strain and
kinetic energies can be rewritten in terms of the global co-ordinate b', integrated
from 0 to 2p as follows:

S=
r2

aEL
2 g

2p

0 6Lp

R2 $R2

L2
p 0 1v

1b'1+2
R
Lp

w
1v
1b'

+w2% H

+
Lp

3R4 $w2 +2
R2

L2
p
w

12w
1b'2

+
R4

L4
p 012w

1b'21
2

% H3

+
2

3R2 $w 1w
1b'

+
R2

L2
p

1w
1b'

12w
1b'2% 1

1b' 0 1
Lp1 H3

−
2

3R2 $vw+
R2

L2
p
v

12w
1b'2% 1

1b' 01
R1 H3

+
1

3Lp 01w
1b'1

2

$ 1

1b' 0 1
Lp1%

2

H3

+
1

3Lp
v2 $ 1

1b' 01
R1%

2

H3

−
2

3Lp
v

1w
1b' $ 1

1b' 01
R1 1

1b' 0 1
Lp1% H37 db', (33)

T=
r4

arL
2 g

2p

0 6Lp $01v
1t1

2

+01w
1t1

2

% H

+
Lp

3R2 $3 01v
1t1

2

−
4R
Lp

1v
1t

12w
1t 1b'

+
R2

L2
p 0 12w

1t 1b'1
2

% H37 db'. (34)

5. EIGENVALUE PROBLEM

Making use of the results derived in the previous sections of the paper, the
Rayleigh–Ritz procedure can now be applied to obtain the eigenvalue problem
which can be expressed in the following general matrix form

$$Kss

Kcs

Ksc

Kcc%− l2 $Mss

Mcs

Msc

Mcc%%$qs

qc%=$00% , (35)
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where

vs
0 vc

0

ws
0 wc

0

vs
1 vc

1

qs =
ws

1 ,
qc =

wc
1 (36)G

G

G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

G
G

G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

···
···

···
···

vs
N vc

N

ws
N wc

N

and [Kss] etc. and [Mss] etc. represent stiffness and mass matrices of size 2(N+1),
where N is the number of terms in the displacement function series (equations (24)
and (25)). The matrix elements are given in the Appendix. The superscripts s and
c indicate that the coefficients are related to sine and cosine terms, respectively,
in the displacement function series and qs , qc are vectors of generalised
co-ordinates vn , wn . The frequency factors of the ring, l, are the eigenvalues of
equation (35) (calculated using standard NAG routines) and are defined by

ln =Xr

E
vnra , (37)

where vn is the natural frequency of the nth radial mode.
For a given value of n, equation (37) will yield a pair of values of ln . These will

be equal in the case of a perfect ring but will be different in the case of an imperfect
ring, giving rise to a higher frequency mode and a lower frequency mode for each
value of n. The magnitude of the frequency splitting between a given pair of modes
will often be small, of the order of a fraction of 1% of the nominal value.
Sometimes, however, for particular combinations of profile variation and mode
number, the frequency splitting can be much larger, of the order of 20% or 30%
[7, 18].

In the general case where the profile of the ring is not symmetric with respect
to b'=0, the frequently used classification of the modes as being ‘‘symmetric’’ and
‘‘anti-symmetric’’ would be inappropriate. In the special cases where the ring is
either perfectly circular or is symmetric about the line defined by b'=0, the
off-diagonal sub-matrices [Ksc], [Kcs], [Msc] and [Mcs] appearing in equation (35) will
be null matrices. In this case equation (35) decomposes into two uncoupled sets
of equations: one set would give modes which are symmetric with respect to b'=0
and the other would give modes which are anti-symmetric.

It should be noted that in solving equation (35) the generalised co-ordinates vs
0

and ws
0 are set to zero to eliminate rigid body motions. In order to get non-trivial

results, all the corresponding columns and rows of the mass and stiffness matrices
which correspond to v and 1/1v at n=0, and w and 1/1w at n=0, which are zero,
must be removed.
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6. CONCLUSIONS

This paper presents a methodology and formulation of the eigenvalue problem
for the free, in-plane, vibration of thin rings of rectangular cross-section and
circumferential profile variation. The profiles of the outer and inner surfaces of
the ring are expressed, in a general way, by Fourier series. An iterative numerical
procedure is presented for the proper determination of the true middle surface
from the specified outer and inner surfaces of the ring. This procedure allows rings
of arbitrary shape to be dealt with. General expressions are presented for the
corresponding mass and stiffness matrices. The resulting eigenvalue problem can
be solved using standard procedures. A companion paper [18] presents a
comprehensive set of results relating to applications of the theory to rings of
nominally circular shape and a further paper [19] presents results for rings of
nominally elliptical shape.
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APPENDIX: MATRIX ELEMENTS IN THE FREQUENCY EQUATION

The elements of the stiffness and mass matrices in equation (35) can be expressed
as follows where m and n are integers which take on the range of values from 0
to N, where N is the number of terms of the displacement function series. Note
that the variables m, n used in this Appendix have different meanings from those
in the main body of the paper.
(i) The elements of the stiffness matrix

K[m+1, n+1]=mnB4 + 1
3A11,

K[m+1, n+N+2]=mB3 + 1
3[n

2D17 −D14 + nA13],

K[m+1, n+2N+3]=mnC4 − 1
3D11,

K[m+1, n+3N+4]=mC3 + 1
3[n

2A17 −A14 − nD13],

K[m+N+2, n+1]= nB3 + 1
3[m

2C17 −C14 +mA13],

K[m+N+2, n+N+2]=B2 + 1
3[B6 − (m2 + n2)B9 +m2n2B10 − nC15 + nm2C16

−mD15 +mn2D16 +mnA12],

K[m+N+2, n+2N+3]= nC3 + 1
3[B14 −m2B17 −mD13],

K[m+N+2, n+3N+4]=C2 + 1
3[C6 − (m2 + n2)C9 +m2n2C10 + nB15 − nm2B16

−mA15 +mn2A16 −mnD12],

K[m+2N+3, n+1]= nmD4 − 1
3C11,

K[m+2N+3, n+N+2]=mD3 + 1
3[B14 − n2B17 − nC13],

K[m+2N+3, n+2N+3]=mnA14 + 1
3B11,

K[m+2N+3, n+3N+4]=mA3 + 1
3[C14 − n2C17 + nB13],

K[m+3N+4, n+1]= nD3 + 1
3[m

2A17 −A14 −mC13],

K[m+3N+4, n+N+2]=D2 + 1
3[D6 − (m2 + n2)D9 +m2n2D10 +mB15

−mn2B16 − nA15 + nm2A16 −mnC12],

K[m+3N+4, n+2N+3]= nA3 + 1
3[D14 −m2D17 +mB13],

K[m+3N+4, n+3N+4]=A2 + 1
3[A6 − (m2 + n2)A9 +m2n2A10 + nD15

−nm2D16 +mC15 −mn2C16 +mnB12].
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(ii) The elements of the mass matrix

M[m+1, n+1]=A1 +A5, M[m+1, n+N+2]= 2
3nA7,

M[m+1, n+2N+3]=−D1 −D5, M[m+1, n+3N+4]=−2
3nD7,

M[m+N+2, n+1]= 2
3mA7, M[m+N+2, n+N+2]=B1 + 1

3mnA8,

M[m+N+2, n+2N+3]=−2
3mD7,

M[m+N+2, n+3N+4]=C1 − 1
3mnD8,

M[m+2N+3, n+1]=−C1 −C5, M[m+2N+3, n+N+2]=−2
3nC7,

M[m+2N+3, n+2N+3]=B1 +B5, M[m+2N+3, n+3N+4]= 2
3nB7,

M[m+3N+4, n+1]=−2
3mC7, M[m+3N+4, n+N+2]=D1 − 1

3mnC8,

M[m+3N+4, n+2N+3]= 2
3mB7,

M[m+3N+4, n+3N+4]=A1 + 1
3mnB8.

In the following expressions, Lp denotes Lamé’s parameter, R denotes the radius
of curvatures, Gij

kl =cos (ib') cos (jb') sin (kb') sin (lb'), and H and H3 denote
(h+ − h−) and (h+3 − h−3), respectively, where h+ and h− are the outer and inner
thicknesses, respectively. These variables can be calculated by an iterative
numerical procedure shown in the main text.
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